Public Policies for Artificial Intelligence in Mexico

Authors

DOI:

https://doi.org/10.15648/legem.1.2025.4599

Keywords:

Artificial intelligence, public policy, Industry 4.0, national strategy, digital transformation, technological governance

Abstract

This study aims to identify the main structural challenges that Mexico faces in adopting artificial intelligence (AI) in strategic productive sectors, as well as to propose guidelines for designing a national AI strategy with an industrial, ethical, and multisectoral approach. The methodology employed was a qualitative documentary design with an analytical-descriptive focus. A total of 78 sources were reviewed, including indexed scientific articles, reports from international organizations, and current legislation. No human participants were involved; the analysis focused on regulatory frameworks, institutional capacities, international indicators, and comparative experiences. The results reveal that Mexico lacks a national AI strategy, exhibits delays in digital infrastructure, low investment in R&D, limited technology adoption among SMEs, and the absence of specific regulations for AI. Nevertheless, the country possesses initial institutional strengths, a strategic geographic position, and general data protection frameworks that can serve as a foundation for technological development. Priority sectors identified include manufacturing, logistics, energy, and healthcare. In conclusion, Mexico urgently needs a national AI strategy that integrates comprehensive public policies, multisectoral participation, ethical governance, innovation financing, infrastructure strengthening, and labor reskilling. Only through this approach will it be possible to integrate AI into the country's productive structure, enhance its competitiveness, and ensure a fair and sustainable digital transition.

References

Arsène, S. (2020). Public–Private Partnerships for Digital Infrastructure Deployment: Lessons from the EU. Telecommunications Policy, 44(8), 102015. https://doi.org/10.1016/j.telpol.2020.102015

Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., ... & Trench, M. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute. https://www.mckinsey.com/featured-insights/artificial-intelligence

Calo, R. (2021). Artificial Intelligence Policy: A Primer and Roadmap. Columbia Law Review, 119(6), 1043–1109. https://columbialawreview.org/content/artificial-intelligence-policy-a-primer-and-roadmap/

Cath, C. (2018). Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180080. https://doi.org/10.1098/rsta.2018.0080

CEPAL. (2023). Transformación digital de las pymes en América Latina: desafíos y oportunidades. Comisión Económica para América Latina y el Caribe. https://www.cepal.org/es/publicaciones/48652

De la Peña, S., & Galindo, C. (2022). Inteligencia artificial e innovación tecnológica en América Latina: una visión desde los clústeres. Revista Latinoamericana de Política Científica, 18(2), 145–167. https://doi.org/10.5281/zenodo.7789876

Edwards, L., & Veale, M. (2017). Slave to the algorithm? Why a right to an explanation is probably not the remedy you are looking for. Duke Law & Technology Review, 16(1), 18–84. https://ssrn.com/abstract=2972855

European Commission. (2021). A European strategy for data: Building a European data space. https://data.europa.eu/doi/10.2759/344870

European Commission. (2021). Proposal for a Regulation on a European approach for Artificial Intelligence. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Floridi, L., Cowls, J., Beltrametti, M., Chiarello, F., et al. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5

González-Fuster, G., & van Brakel, R. (2021). The fundamental rights implications of the use of biometric and behavioural data in digital public spaces. Computer Law & Security Review, 40, 105544. https://doi.org/10.1016/j.clsr.2020.105544

Ibarra, E., De la Peña, S., & Santoyo, C. (2024). Panorama de la Inteligencia Artificial en México: hacia una Estrategia Nacional. México.

ITU. (2023). Measuring digital development: Facts and figures 2023. International Telecommunication Union. https://www.itu.int/en/ITU-D/Statistics

Madnick, S., Johnson, S., & Wang, R. Y. (2021). The Effectiveness of Cybersecurity Policies and Practices for Industrial Control Systems. Journal of Cybersecurity, 7(1), taab017. https://doi.org/10.1093/cybsec/taab017

Nemitz, P. (2018). Constitutional democracy and technology in the age of artificial intelligence. Philosophical Transactions of the Royal Society A, 376(2133), 20180089. https://doi.org/10.1098/rsta.2018.0089

OECD. (2021). National Artificial Intelligence Strategies. OECD Digital Economy Papers, No. 311. https://doi.org/10.1787/4de2f1c6-en

OECD. (2022). OECD Digital Economy Outlook 2022. OECD Publishing. https://doi.org/10.1787/75f79015-en

OECD. (2022). OECD Science, Technology and Innovation Outlook 2023. OECD Publishing. https://doi.org/10.1787/75f79015-en

Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura. (2024). México. Evaluación del estadío de preparación de la inteligencia artificial. París: Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura.

Taddeo, M. (2021). Data Philanthropy and Sovereignty: Rethinking How Data Is Governed. Philosophy & Technology, 34(3), 511–525. https://doi.org/10.1007/s13347-020-00430-2

UNESCO. (2021). Recommendation on the Ethics of Artificial Intelligence. https://unesdoc.unesco.org/ark:/48223/pf0000381137

Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Transparent, explainable, and accountable AI for robotics. Science Robotics, 2(6), eaan6080. https://doi.org/10.1126/scirobotics.aan6080

World Bank. (2021). The Innovation Paradox: Developing-Country Capabilities and the Unrealized Promise of Technological Catch-Up. https://doi.org/10.1596/978-1-4648-1160-1

World Economic Forum. (2023). Global Future Council on Digital Infrastructure 2023. https://www.weforum.org/publications/digital-infrastructure-2023

World Economic Forum. (2023). The Future of Jobs Report 2023. https://www.weforum.org/publications/the-future-of-jobs-report-2023/

Zhang, L., Li, Y., & Qian, Y. (2022). Cultivating AI ecosystems: Comparative insights from Asia-Pacific innovation hubs. Technological Forecasting and Social Change, 180, 121693. https://doi.org/10.1016/j.techfore.2022.121693

Zhang, Y., & Gao, H. (2022). Enhancing cybersecurity resilience in intelligent manufacturing: A framework and case study. Journal of Manufacturing Systems, 62, 1024–1037. https://doi.org/10.1016/j.jmsy.2021.12.001

Zeng, Y., Lu, E., & Huangfu, C. (2022). Linking ethical AI principles to practice: An interdisciplinary approach. AI & Society, 37, 865–876. https://doi.org/10.1007/s00146-021-01154-1

Zetzsche, D. A., Buckley, R. P., Arner, D. W., & Barberis, J. N. (2020). Regulating a revolution: From regulatory sandboxes to smart regulation. Fordham Journal of Corporate & Financial Law, 23(1), 31–103. https://ir.lawnet.fordham.edu/jcfl/vol23/iss1/1

How to Cite

Díaz de León, C. G., Lugo Rincón , P. C., & Ibarra González, S. A. (2025). Public Policies for Artificial Intelligence in Mexico. Legem, 11(1), 68–84. https://doi.org/10.15648/legem.1.2025.4599

Downloads

Download data is not yet available.

Published

2025-06-30

Issue

Section

Artículos

Most read articles by the same author(s)